เทคโนโลยีควบคุมสารเคมีอันตราย Technologies for Hazardous Waste Management

คม 200 การจัดการสารเคมีอันตรายและวัตถุมีพิษ

15/07/2556

อ.ดร.นเร ผิวนิ่ม Naray Pewnim

0800-1000 น.

ตารางสอน คม 200 ภาคเรียนที่ 1/2556 ทุกวันจันทร์ 0800-1000 น. วันที่ 4. เทคโนโลยีควบคุมสารเคมีอันตรายและวัตถุมีพิษ อ.ดร.นเร 24-26 กรกฎาคม 5. กรณีศึกษา 1 (ควบคุมสารเคมีในอุตสาหกรรม) อ.ดร.นเร 8. การบรรยายรับเชิญจากภาคหน่วยงานภายนอกและ อ.ดร.นเร 19 สิงหาคม 6. เทคโนโลยีเพื่อทำความสะอาดสารเคมีอันตรายและ 26 สิงหาคม อ.คร.ณัฐพล 2 กันยายน 7. กรณีศึกษา 2 (ทำความสะอาดสารเคมีอันตราย) 9 กันยายน อ.ดร.ณัฐพล 16 กันยายน 9. การเสนอผลงานเป็นกลุ่ม อ.ดร.ณัฐพล * คือสัปดาห์ที่วันจันทร์ตรงกับวันหยุด มีการนัดสอน make up ภายในสัปดาห์เดียวกันโดยการตกลงกับนักศึกษาก่อน

แหล่งอ้างอิง References

http://msds.pcd.go.th/

http://www.hse.gov.uk/chemicals/index.htm

http://www.fda.moph.go.th/eng/hazardous/index.stm

http://www.cdc.gov/niosh/topics/

Technologies and management strategies for Hazardous Waste Control (1983)

2013-07-15

อันตรายของสารเคมีแบ่งได้เป็น 3 ประเภท

1. อันตรายทางกายภาพ Physical Hazard

2. อันตรายต่อสุขภาพ Health Hazard

3. อันตรายต่อสิ่งแวดล้อม Environmental Hazard

2013-07-15

อันตรายทางกายภาพ Physical Hazards

Combustible liquids ของเหลวติดไฟได้

Compressed gases ก๊าซความดันสูง

Explosives วัตถุระเบิด Flammables วัตถุไวไฟ

Oxidizers สารที่เกิดปฏิกิริยาออกซิไดส์ง่าย

Pyrophorics สารที่ลุกติดไฟได้เองเมื่อสัมผัสกับอากาศ

Unstable/reactive chemicals สารเคมีที่ไม่เสถียร (เกิดปฏิกิริยาง่าย)

Water-reactive chemicals สารเคมีที่ทำปฏิกิริยากับน้ำ

2013-07-15

อันตรายต่อสุขภาพ Health Hazards

สารก่อมะเร็ง Carcinogens Corrosives สารกัดกร่อน

Highly toxic chemicals สารเคมีที่มีความเป็นพิษสูง

สารระคายเคือง **Irritants**

สารที่มีผลต่อระบบประสาท Sensitizers

สารที่เป็นพิษ Toxic

อันตรายต่อสุขภาพ - อวัยวะที่ได้รับผลกระทบ

Hepatotoxins (liver) ตับ Nephrotoxins (kidney)

ระบบประสาท

Neurotoxins (nervous system) Hemato-poietic system (blood) ระบบเลือด

Pulmonary (lungs) ระบบทางเดินหายใจ

Reproductive organs ระบบสืบพันธุ์

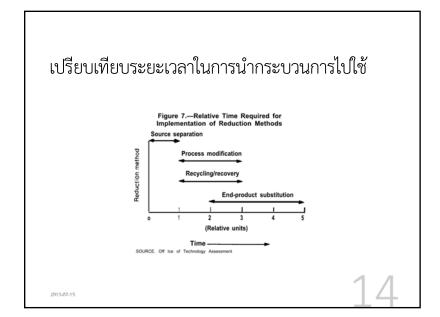
(โครโมโซม/DNA/ทารกในครรภ์) (chromosomal damage or fetal effects)

ผิวหนังชั้นบน Cutaneous (dermal layer of the skin)

Optical (eye or vision)

อันตรายต่อสิ่งแวดล้อม Environmental

เทคโนโลยีควบคุมสารเคมีอันตรายและวัตถุมีพิษ


- 1. Waste reduction alternatives
- 2. Hazard reduction alternatives: treatment and disposal
- 3. Ocean use: disposal and dispersal
- 4. Uncontrolled sites

Waste reduction alternatives

- 1.1 Source segregation
- 1.2 Process modification
- 1.3 End product substitution
- 1.4 Recovery and Recycling
- Linked to proprietary manufacturing technology

013-07-15

13

1.1 Source segregation

- Best method is to reduce the volume of waste
- Permanently eliminate hazardous character
- contain and immobilize hazardous constituents
- Smaller firms might find this a disincentive based on economics, e.g. electroplating plant sending waste to municipal waste treatment plant instead of extracting cyanide itself.

2013-07-15

1.2 Process modification

- Changes in operation temperature, pressure, raw material composition
- New process or equipment
- Usually process specific, not industry-wide
- e.g. metal-finishing industry replacing cyanide-based electrolytes for "safer" acids, MSA, etc.

2013-07-15

1.3 End product substitution

- substitute end product for another new one
- manufacture of new product would reduce the generation of hazardous waste

E.g. asbestos pipes (แร่ใยหิน-ก่อให้เกิดโรคปอด) can be replaced with iron, clay, or pvc

2013-07-15

17

การเปลี่ยนแปลงผลิตภัณฑ์/ของเสียเคมี

Table 25.—End-Product Substitutes for Reduction of Hazardous Waste

Product	Use	Ratio of waste:" original product	Available substitute	Ratio of waste:" substitute product
Asbestos	Pipe	1.09	Iron Clay PVC	0.1 phenols, cyanides, 0.05 fluorides 0.04 VCM manufacture 1.0 PVC pipe
	Friction products (brake linings)	1.0+ manufacturing waste	Glass fiber Steel wool Mineral wools Carbon fiber Sintered metals Cement	0
	Insulation	1.0+ manufacturing	Glass fiber Cellulose fiber	0.2
PCBs	Electrical transformers	1.0	Oil-filled transformers Open-air-cooled transformers	0
Cadmium	Electroplating	0.29	Zinc electroplating	0.06
Creosote treated wood	Piling		Concrete, steel	0.0 (reduced hazard)
Chlorofluorocarbons	Industrial solvents	70/81 =0.9	Methyl chloroform; methylene chloride	0.9 (reduced hazard)
DDT	Pesticide	1.0+ manufacturing waste	Other chemical pesticides	(reduced hazard) 1.0+ manufacturing waste

Encouraging end product substitution

- regulations
- limitation of raw materials
- tax incentives
- Federal procurement practices
- consumer education

2013-07-15

1.4 Recovery and Recycling

- Recovery = separation of substance from mixture
- Recycling = reuse of such substance
- Materials that can be easily separated through physical/chemical differences.
 - organic acids by distillation
- solids by filtration
- In-plant and commercial (off-site)

2013-07-15

ตัวอย่างการกู้คืนของเสียด้วยกระบวนการต่างๆ

Table 26.—Commercially Applied Recovery Technologies

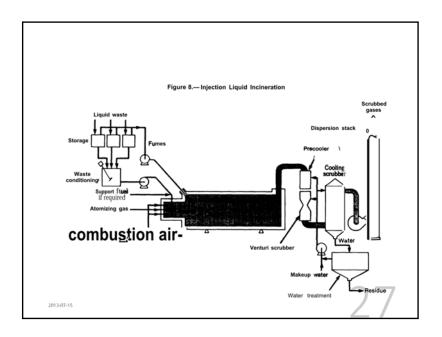
Generic waste	Typical source of effluent	Recovery technologies
Solids in aqueous suspension	Salt/soda ash liming operations	Filtration
Heavy metals	Metal hydroxides from metal-plating waste; sludge from steel-pickling operations	Electrolysis
Organic liquids	Petrochemicals/mixed alcohol	Distillation
Inorganic aqueous solution	Concentration of inorganic salts/acids	Evaporation
Separate phase solids, grease/oil	Tannery waste/petroleum waste	Sedimentation/skimming
Chrome salt solutions	Chromium-plating solutions/tanning solutions	Reduction
Metals; phosphate sulfates	Steel-pickling operations	Precipitation
SOLIDGE Off top of Technology Assessment		

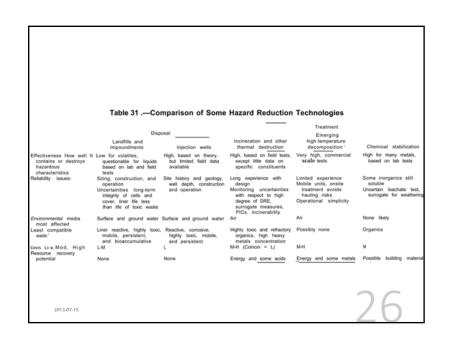
2013-07-15

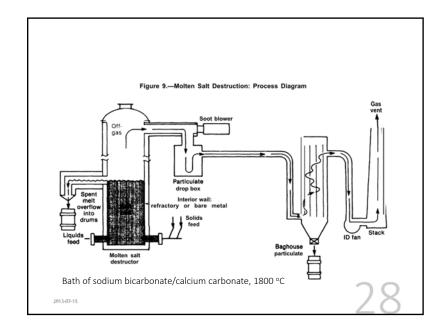
Technology/description	Stage of development	Economics	Types of waste streams	Separation efficiency	Industrial applications
Electrolysis: Separation of positively/ negatively charged materials by application of electric current Carbon/resin absorption:	not applied to recovery		Heavy metals; ions from aqueous solutions; copper recovery	Good	Metal plating
Dissolved materials selectively absorbed in carbon or resins. Absorbents must be regenerated Solvent extraction:	Proven for thermal regeneration of carbon; less practical for recovery of adsorbate	Relatively costly thermal regeneration; energy intensive	Organics/inorganics from aqueous solutions with low concentrations, i.e., phenols		Phenolics
Solvent used to selectively dissolve solid or extract liquid from waste	Commonly used in industrial processing	Relatively high costs for solvent	Organic liquids, phenols, acids	Fairly high loss of solvent may contribute to hazardous waste problem	Recovery of dyes
Chemical transformation: Precipitation:					
Chemical reaction causes formation of solids which settle	Common	Relatively high costs	Lime slurries	Good	Metal-plating wastewater treatment
Electrodialysis: Separation based on differential rates of diffusion through membranes. Electrical current applied to enhance ionic movement	Commercial technol- ogy, not commer- cial for hazardous material recovery	Moderately expensive	Separation/concentration of ions from aqueous streams; application to chromium recovery	Fairly high	Separation of acids and metallic solutions

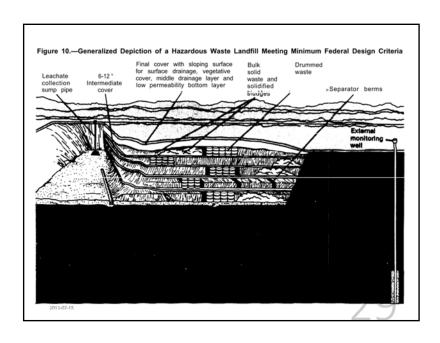
2013-07-15

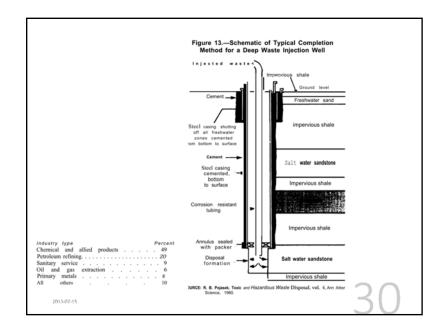
	Table 27.—Desc	cription of Technologies	Currently Used for Rec	overy of Materials	
Technology/description	stage of devélopment	Economics	Types of waste streams	Separation efficiency	Industrial applications
Physical separation: Gravity setting: Tanks, ponds provide hold-up time alllowing solids to settle; grease skimmed to overflow to another vessel Filtration:	Commonly used in wastewater treatment	Relatively inexpensive; dependent on particle size and settling rate	Slurrries with separate phase solids, such as metal hydroxide	Limited to solids (large particles) that settle quickly (less than 2 hours)	industrial wastewater treatment first step
Collection devices such as screens, cloth, or other; liquid passes and solids are retained on porous media Flotation:	Commonly used	Labor intensive: relatively inexpensive; energy required for pumping	Aqueous solutions with finely divided solids; gelatinous sludge	Good for relatively large particles	Tannery water
Air bubbled through liquid to collect finely divided solids that rise to the surface with the bubbles		Relatively inexpensive	Aqueous solutions with finely divided solids	Good for finely divided solids	Refinery (oil/water mixtures paper waste; mineral industry
Agent added to aggregate solids together which are easily settled Centrifugation:	Commercial practice	Relatively inexpensive	Aqueous solutions with finely divided solids	Good for finely divided solids	Refinery; paper waste; mine industry
Spinning of liquids and centrifugal force causes separation by different densities	Practiced commer- cially for small- scale systems	Competitive with filtration	Liquid/liquid or liquid/solid separation, i.e., oil/water; resins; pigments from lacquers	Fairly high see	Paints
Component separation Distillation:					
Successfully boiling off of materials at different temperatures (based on different boiling points) Evacoration:	Commercial practice	Energy intensive	Organic liquids	Very high separations achievable (99 * % concentrations) of several components	Solvent separations; chemical and petroleum industry
Solvent recovery by boiling off the solvent	Commercial practice in many industries	Energy intensive	Organic/inorganic aqueous streams; slurries, sludges, i.e., caustic soda	Very high separations of single, evaporated component achievable	Rinse waters from metal- plating waste
2013-07-15					77
					\angle


สรุปข้อดี/ข้อเสียของวิธีการลดปริมาณของเสีย


Advantages	Disadvantages
Source segregation or separation () Easy to implement; usually low investment 2) Short-term solution	1) Still have some waste to manage
Process modification 1) Potentially reduce both hazard and volume 2) Moderate-term solution 3) Potential savings in production costs	Requires R&D effort; capital investment Usually does not have industrywide impact
End product substitution 1) Potentially industrywide impact—large volume, hazard reduction	Relatively long-term solutions Many sectors affected Usually a side benefit of product improvement May require change in consumer habits Major investments required—need growing market
Recovery/recycling •/n-p/ant 1) Moderate-term solution 2) Potential savings in manufacturing costs 3) Reduced liability compared to commercial recovery or WaSte exchange	May require capital investment May not have wide impact
Commercial recovery (offsite) No capital investment required for generator Economy of scale for small waste generators	Liability not transferred to operator Tyrivately owned, must make profit and return investment Requires permitting Requires permitting Requires permitting Requires permitting Requires permitting Requires permitting Requires uniformly in composition
Waste exchange Transportation costs only	Liability not transferred Requires uniformity in composition of waste Requires long-term relationships—two-party involvement


2. Hazard reduction alternatives


- Thermal and/or thermal treatment
- Land disposal
- Advanced landfills, injection wells
- Indirect monitoring, e.g. aquifer contamination
- Waste water treatment: chemical, physical, and biological


3.07.15

