เทคโนโลยีควบคุมสารเคมีอันตราย Technologies for Hazardous Waste Management คม 200 การจัดการสารเคมีอันตรายและวัตถุมีพิษ 15/07/2556 อ.ดร.นเร ผิวนิ่ม Naray Pewnim 0800-1000 น. #### ตารางสอน คม 200 ภาคเรียนที่ 1/2556 ทุกวันจันทร์ 0800-1000 น. วันที่ 4. เทคโนโลยีควบคุมสารเคมีอันตรายและวัตถุมีพิษ อ.ดร.นเร 24-26 กรกฎาคม 5. กรณีศึกษา 1 (ควบคุมสารเคมีในอุตสาหกรรม) อ.ดร.นเร 8. การบรรยายรับเชิญจากภาคหน่วยงานภายนอกและ อ.ดร.นเร 19 สิงหาคม 6. เทคโนโลยีเพื่อทำความสะอาดสารเคมีอันตรายและ 26 สิงหาคม อ.คร.ณัฐพล 2 กันยายน 7. กรณีศึกษา 2 (ทำความสะอาดสารเคมีอันตราย) 9 กันยายน อ.ดร.ณัฐพล 16 กันยายน 9. การเสนอผลงานเป็นกลุ่ม อ.ดร.ณัฐพล * คือสัปดาห์ที่วันจันทร์ตรงกับวันหยุด มีการนัดสอน make up ภายในสัปดาห์เดียวกันโดยการตกลงกับนักศึกษาก่อน #### แหล่งอ้างอิง References http://msds.pcd.go.th/ http://www.hse.gov.uk/chemicals/index.htm http://www.fda.moph.go.th/eng/hazardous/index.stm http://www.cdc.gov/niosh/topics/ Technologies and management strategies for Hazardous Waste Control (1983) 2013-07-15 #### อันตรายของสารเคมีแบ่งได้เป็น 3 ประเภท 1. อันตรายทางกายภาพ Physical Hazard 2. อันตรายต่อสุขภาพ Health Hazard 3. อันตรายต่อสิ่งแวดล้อม Environmental Hazard 2013-07-15 อันตรายทางกายภาพ Physical Hazards Combustible liquids ของเหลวติดไฟได้ Compressed gases ก๊าซความดันสูง Explosives วัตถุระเบิด Flammables วัตถุไวไฟ Oxidizers สารที่เกิดปฏิกิริยาออกซิไดส์ง่าย Pyrophorics สารที่ลุกติดไฟได้เองเมื่อสัมผัสกับอากาศ Unstable/reactive chemicals สารเคมีที่ไม่เสถียร (เกิดปฏิกิริยาง่าย) Water-reactive chemicals สารเคมีที่ทำปฏิกิริยากับน้ำ 2013-07-15 ### อันตรายต่อสุขภาพ Health Hazards สารก่อมะเร็ง Carcinogens Corrosives สารกัดกร่อน Highly toxic chemicals สารเคมีที่มีความเป็นพิษสูง สารระคายเคือง **Irritants** สารที่มีผลต่อระบบประสาท Sensitizers สารที่เป็นพิษ Toxic อันตรายต่อสุขภาพ - อวัยวะที่ได้รับผลกระทบ Hepatotoxins (liver) ตับ Nephrotoxins (kidney) ระบบประสาท Neurotoxins (nervous system) Hemato-poietic system (blood) ระบบเลือด Pulmonary (lungs) ระบบทางเดินหายใจ Reproductive organs ระบบสืบพันธุ์ (โครโมโซม/DNA/ทารกในครรภ์) (chromosomal damage or fetal effects) ผิวหนังชั้นบน Cutaneous (dermal layer of the skin) Optical (eye or vision) อันตรายต่อสิ่งแวดล้อม Environmental เทคโนโลยีควบคุมสารเคมีอันตรายและวัตถุมีพิษ - 1. Waste reduction alternatives - 2. Hazard reduction alternatives: treatment and disposal - 3. Ocean use: disposal and dispersal - 4. Uncontrolled sites #### Waste reduction alternatives - 1.1 Source segregation - 1.2 Process modification - 1.3 End product substitution - 1.4 Recovery and Recycling - Linked to proprietary manufacturing technology 013-07-15 13 #### 1.1 Source segregation - Best method is to reduce the volume of waste - Permanently eliminate hazardous character - contain and immobilize hazardous constituents - Smaller firms might find this a disincentive based on economics, e.g. electroplating plant sending waste to municipal waste treatment plant instead of extracting cyanide itself. 2013-07-15 #### 1.2 Process modification - Changes in operation temperature, pressure, raw material composition - New process or equipment - Usually process specific, not industry-wide - e.g. metal-finishing industry replacing cyanide-based electrolytes for "safer" acids, MSA, etc. 2013-07-15 #### 1.3 End product substitution - substitute end product for another new one - manufacture of new product would reduce the generation of hazardous waste E.g. asbestos pipes (แร่ใยหิน-ก่อให้เกิดโรคปอด) can be replaced with iron, clay, or pvc 2013-07-15 17 ## การเปลี่ยนแปลงผลิตภัณฑ์/ของเสียเคมี #### Table 25.—End-Product Substitutes for Reduction of Hazardous Waste | Product | Use | Ratio of waste:"
original product | Available substitute | Ratio of waste:"
substitute product | |-----------------------|--------------------------------------|--------------------------------------|---|--| | Asbestos | Pipe | 1.09 | Iron
Clay
PVC | 0.1 phenols, cyanides,
0.05 fluorides
0.04 VCM manufacture
1.0 PVC pipe | | | Friction products
(brake linings) | 1.0+ manufacturing waste | Glass fiber
Steel wool
Mineral wools
Carbon fiber
Sintered metals
Cement | 0 | | | Insulation | 1.0+ manufacturing | Glass fiber
Cellulose fiber | 0.2 | | PCBs | Electrical transformers | 1.0 | Oil-filled transformers
Open-air-cooled
transformers | 0 | | Cadmium | Electroplating | 0.29 | Zinc electroplating | 0.06 | | Creosote treated wood | Piling | | Concrete, steel | 0.0 (reduced hazard) | | Chlorofluorocarbons | Industrial solvents | 70/81 =0.9 | Methyl chloroform;
methylene chloride | 0.9 (reduced hazard) | | DDT | Pesticide | 1.0+ manufacturing
waste | Other chemical
pesticides | (reduced hazard)
1.0+ manufacturing
waste | ### Encouraging end product substitution - regulations - limitation of raw materials - tax incentives - Federal procurement practices - consumer education 2013-07-15 ## 1.4 Recovery and Recycling - Recovery = separation of substance from mixture - Recycling = reuse of such substance - Materials that can be easily separated through physical/chemical differences. - organic acids by distillation - solids by filtration - In-plant and commercial (off-site) 2013-07-15 ## ตัวอย่างการกู้คืนของเสียด้วยกระบวนการต่างๆ #### Table 26.—Commercially Applied Recovery Technologies | Generic waste | Typical source of effluent | Recovery technologies | |--|---|------------------------| | Solids in aqueous suspension | Salt/soda ash liming operations | Filtration | | Heavy metals | Metal hydroxides from metal-plating waste;
sludge from steel-pickling operations | Electrolysis | | Organic liquids | Petrochemicals/mixed alcohol | Distillation | | Inorganic aqueous solution | Concentration of inorganic salts/acids | Evaporation | | Separate phase solids, grease/oil | Tannery waste/petroleum waste | Sedimentation/skimming | | Chrome salt solutions | Chromium-plating solutions/tanning solutions | Reduction | | Metals; phosphate sulfates | Steel-pickling operations | Precipitation | | SOLIDGE Off top of Technology Assessment | | | 2013-07-15 | Technology/description | Stage of development | Economics | Types of waste streams | Separation efficiency | Industrial applications | |--|---|--|--|---|--| | Electrolysis: Separation of positively/ negatively charged materials by application of electric current Carbon/resin absorption: | not applied to recovery | | Heavy metals; ions from
aqueous solutions; copper
recovery | Good | Metal plating | | Dissolved materials
selectively absorbed in
carbon or resins.
Absorbents must be
regenerated
Solvent extraction: | Proven for thermal
regeneration of
carbon; less practical
for recovery of
adsorbate | Relatively costly thermal
regeneration; energy
intensive | Organics/inorganics from
aqueous solutions with low
concentrations, i.e., phenols | | Phenolics | | Solvent used to selectively
dissolve solid or extract
liquid from waste | Commonly used in
industrial processing | Relatively high costs for
solvent | Organic liquids, phenols, acids | Fairly high loss of solvent
may contribute to
hazardous waste problem | Recovery of dyes | | Chemical transformation:
Precipitation: | | | | | | | Chemical reaction causes
formation of solids which
settle | Common | Relatively high costs | Lime slurries | Good | Metal-plating wastewater
treatment | | Electrodialysis: Separation based on differential rates of diffusion through membranes. Electrical current applied to enhance ionic movement | Commercial technol-
ogy, not commer-
cial for hazardous
material recovery | Moderately expensive | Separation/concentration of
ions from aqueous streams;
application to chromium
recovery | Fairly high | Separation of acids and metallic solutions | 2013-07-15 | | Table 27.—Desc | cription of Technologies | Currently Used for Rec | overy of Materials | | |--|---|--|--|---|--| | Technology/description | stage of devélopment | Economics | Types of waste streams | Separation efficiency | Industrial applications | | Physical separation:
Gravity setting:
Tanks, ponds provide hold-up
time alllowing solids to
settle; grease skimmed to
overflow to another vessel
Filtration: | Commonly used in
wastewater
treatment | Relatively inexpensive;
dependent on particle size
and settling rate | Slurrries with separate phase
solids, such as metal
hydroxide | Limited to solids (large
particles) that settle quickly
(less than 2 hours) | industrial wastewater
treatment first step | | Collection devices such as
screens, cloth, or other;
liquid passes and solids
are retained on porous
media
Flotation: | Commonly used | Labor intensive: relatively
inexpensive; energy
required for pumping | Aqueous solutions with finely divided solids; gelatinous sludge | Good for relatively large particles | Tannery water | | Air bubbled through liquid to collect finely divided solids that rise to the surface with the bubbles | | Relatively inexpensive | Aqueous solutions with finely
divided solids | Good for finely divided solids | Refinery (oil/water mixtures
paper waste; mineral
industry | | Agent added to aggregate solids together which are easily settled
Centrifugation: | Commercial practice | Relatively inexpensive | Aqueous solutions with finely divided solids | Good for finely divided solids | Refinery; paper waste; mine
industry | | Spinning of liquids and
centrifugal force causes
separation by different
densities | Practiced commer-
cially for small-
scale systems | Competitive with filtration | Liquid/liquid or liquid/solid
separation, i.e., oil/water;
resins; pigments from
lacquers | Fairly high see | Paints | | Component separation Distillation: | | | | | | | Successfully boiling off of materials at different temperatures (based on different boiling points) Evacoration: | Commercial practice | Energy intensive | Organic liquids | Very high separations
achievable (99 * %
concentrations) of several
components | Solvent separations;
chemical and petroleum
industry | | Solvent recovery by boiling off the solvent | Commercial practice in
many industries | Energy intensive | Organic/inorganic aqueous
streams; slurries, sludges,
i.e., caustic soda | Very high separations of
single, evaporated
component achievable | Rinse waters from metal-
plating waste | | 2013-07-15 | | | | | 77 | | | | | | | \angle | ## สรุปข้อดี/ข้อเสียของวิธีการลดปริมาณของเสีย | Advantages | Disadvantages | |---|--| | Source segregation or separation
() Easy to implement; usually low investment
2) Short-term solution | 1) Still have some waste to manage | | Process modification 1) Potentially reduce both hazard and volume 2) Moderate-term solution 3) Potential savings in production costs | Requires R&D effort; capital investment Usually does not have industrywide impact | | End product substitution 1) Potentially industrywide impact—large volume, hazard reduction | Relatively long-term solutions Many sectors affected Usually a side benefit of product improvement May require change in consumer habits Major investments required—need growing market | | Recovery/recycling •/n-p/ant 1) Moderate-term solution 2) Potential savings in manufacturing costs 3) Reduced liability compared to commercial recovery or WaSte exchange | May require capital investment May not have wide impact | | Commercial recovery (offsite) No capital investment required for generator Economy of scale for small waste generators | Liability not transferred to operator Tyrivately owned, must make profit and return investment Requires permitting Requires permitting Requires permitting Requires permitting Requires permitting Requires permitting Requires uniformly in composition | | Waste exchange Transportation costs only | Liability not transferred Requires uniformity in composition of waste Requires long-term relationships—two-party involvement | #### 2. Hazard reduction alternatives - Thermal and/or thermal treatment - Land disposal - Advanced landfills, injection wells - Indirect monitoring, e.g. aquifer contamination - Waste water treatment: chemical, physical, and biological 3.07.15