Answer for Homework II (Crystal structure)

Calculate the theoretical density of the compounds containing these following crystal structure;

1) Caesium Chloride structure (e.g. CsCl)

Crystal structure details;

1) Primitive cubic lattice type of Cl^{-}ions (blue) with Cs^{+}ion (Pink) sits in the middle
2) Containing one atom of Cs (in the middle) and one atom of Cl (corner sharing so $1 / 8 \times 8=1$).
3) Unit cell parameters

$$
a=b=c=4.123 \AA
$$

$\alpha=\beta=\gamma=90^{\circ}$ from [http://www.ilpi.com/inorganic/structures/cscl/]
4) Atomic number of $\mathrm{Cs}=132.91 \mathrm{~g} / \mathrm{mole}$ and $\mathrm{Cl}=35.45 \mathrm{~g} / \mathrm{mole}$

Calculation:

Mass of unit cell = mass of one atom of Cs +mass of one atom of Cl

$$
\begin{aligned}
& =\left(\frac{1 \times 132.91}{6.02 \times 10^{23}}\right)+\left(\frac{1 \times 35.45}{6.02 \times 10^{23}}\right) \\
& =2.80 \times 10^{-22} \mathrm{~g}
\end{aligned}
$$

Volume of cubic (primitive) unit cell $=(\text { length of unit cell })^{3} \quad \rightarrow$ get the length from reference

Crystal structure details;

1) Face-centred cubic lattice type of S^{2-} ions (blue) with Zn^{2+} ion sits in the hole
2) Containing 4 atoms of Zn all inside the unit cell and 4 atoms of S (fcc packing so $1 / 8 \times 8$ (corner) $+1 / 2 \times 6$ (face of the box) $=4$).
3) Unit cell parameters
$a=b=c=5.41 \AA$
$\alpha=\beta=\gamma=90^{\circ}$ from [http://www.ilpi.com/inorganic/structures/zincblende/index.html]
4) Atomic number of $\mathrm{Zn}=65.38 \mathrm{~g} / \mathrm{mole}$ and $\mathrm{S}=32.06 \mathrm{~g} / \mathrm{mole}$

Calculation:

Mass of unit cell = mass of 4 atoms of $\mathrm{Zn}+$ mass of 4 atoms of S

$$
\begin{aligned}
& =\left(\frac{4 \times 65.38}{6.02 \times 10^{23}}\right)+\left(\frac{4 \times 32.06}{6.02 \times 10^{23}}\right) \\
& =6.47 \times 10^{-22} \mathrm{~g}
\end{aligned}
$$

Volume of cubic (primitive) unit cell $=(\text { length of unit cell })^{3} \quad \rightarrow$ get the length from reference

Unit conversion to cm

$$
\begin{aligned}
& =(5.41)^{3} \quad \AA^{3} \\
& =158.3 \AA^{3}
\end{aligned}
$$

$$
=1.583 \times 10^{-22} \mathrm{~cm}^{3}
$$

Thus, density = mass / volume

$$
=\frac{6.47 \times 10^{-22} g}{1.583 \times 10^{-22} \mathrm{~cm}}
$$

$=4.09 \mathrm{~g} / \mathrm{cm}^{3}$

3) ZnS (Wurtzite)

Method 1

http://www.youtube.com/watch?v=U7rvS7kdEu0

Crystal structure details;

1) Containing 2 atoms of Zn in purple (one insides the unit cell and another one shared to other 4 boxes ($1 / 4 \times 4$), and 2 atoms of S in yellow (one insides the unit cell and another one is at corner shared location ($1 / 8 \times 8$)
2) Unit cell parameters

$$
\begin{aligned}
& \mathrm{a}=\mathrm{b}=382 \mathrm{pm}=3.82 \AA \quad \mathrm{c}=626 \mathrm{pm}=6.26 \AA \\
& \left.\boldsymbol{\alpha}=\boldsymbol{\beta}=90^{\circ} \text { and } \gamma=120^{\circ} \text { from [http://www.kayelaby.npl.co.uk/chemistry } / 37 / 37 \text { 7.html }\right]
\end{aligned}
$$

3) Atomic number of $\mathrm{Zn}=65.38 \mathrm{~g} / \mathrm{mole}$ and $\mathrm{S}=32.06 \mathrm{~g} / \mathrm{mole}$

Calculation:

Mass of unit cell

$$
=\text { mass of } 2 \text { atoms of } \mathrm{Zn}+\text { mass of } 2 \text { atoms of } \mathrm{S}
$$

$$
\begin{aligned}
& =\left(\frac{2 \times 65.38}{6.02 \times 10^{23}}\right)+\left(\frac{2 \times 32.06}{6.02 \times 10^{23}}\right) \\
& =3.24 \times 10^{-22} \mathrm{~g}
\end{aligned}
$$

Volume of cubic (primitive) unit cell

$$
\begin{aligned}
& =(\text { area of the red parallelogram }) \times(\text { height; c) } \\
& =\left(3.82 \times\left(3.82 \times \sin 60^{\circ}\right) \times(6.26) \quad \AA^{3}\right.
\end{aligned}
$$

$$
=79.1 \AA^{3}
$$

Unit conversion to cm

(as $1 \AA^{3}=1 \times 10^{-24} \mathrm{~cm}^{3}$)

$$
=7.91 \times 10^{-23} \mathrm{~cm}^{3}
$$

Thus, density = mass / volume

$$
=\frac{3.24 \times 10^{-22} g}{7.91 \times 10^{-23} \mathrm{~cm}}
$$

Method 2

If you consider as hexagonal structure, which includes 3 boxes (from method 1), number of atoms inside and volume of the unit cell need to be reconsidered.

1) number of atoms ($3 \times$ number of each atoms in one box)

So there will be 6 atoms of Zn and 6 atoms of S .
2) Volume = hexagonal shape area x height of unit cell.
3) hexagonal shape area includes 6 triangles

Calculation:

Mass of unit cell $\quad=$ mass of 6 atoms of Zn +mass of 6 atoms of S

$$
\begin{aligned}
& =\left(\frac{6 \times 65.38}{6.02 \times 10^{23}}\right)+\left(\frac{6 \times 32.06}{6.02 \times 10^{23}}\right) \\
& =9.72 \times 10^{-22} \mathrm{~g}
\end{aligned}
$$

Volume of cubic (primitive) unit cell
$=($ area of the base $) \times$ (height; c)
$=\left(6 \times \frac{1}{2} \times 3.82 \times\left(3.82 \times \sin 60^{\circ}\right) \times(6.26) \quad \AA^{3}\right.$
$=237 \AA^{3}$

Unit conversion to cm

(as $1 \AA^{3}=1 \times 10^{-24} \mathrm{~cm}^{3}$)

$$
=2.37 \times 10^{-22} \mathrm{~cm}^{3}
$$

Thus, density = mass / volume

$$
=\frac{9.72 \times 10^{-22} \mathrm{~g}}{2.37 \times 10^{-22} \mathrm{~cm}}
$$

4) Fluorite structure $\left(\mathrm{CaF}_{2}\right)$

Crystal structure details;

1) Face-centred cubic lattice type of Ca^{2+} ions (Green) with F^{-}(red) ions sit in the tetrahedral holes
2) Containing 8 atoms of F all inside the unit cell and 4 atoms of Ca (fcc packing so $1 / 8 \times 8$ (corner) $+1 / 2 \times 6$ (face of the box) $=4$).
3) Unit cell parameters

$$
\begin{aligned}
& a=b=c=545 \mathrm{pm}=5.45 \AA \\
& \alpha=\beta=\gamma=90^{\circ} \text { from [http://www.kayelaby.npl.co.uk/chemistry/3 7/3 7 7.html] }
\end{aligned}
$$

4) Atomic number of $\mathrm{Ca}=40.078 \mathrm{~g} / \mathrm{mole}$ and $\mathrm{F}=18.998 \mathrm{~g} / \mathrm{mole}$

Calculation:

Mass of unit cell $=$ mass of 4 atoms of $C a+$ mass of 8 atom of F

$$
\begin{aligned}
& =\left(\frac{4 \times 40.078}{6.02 \times 10^{23}}\right)+\left(\frac{8 \times 18.998}{6.02 \times 10^{23}}\right) \\
& =5.1876 \times 10^{-22} \mathrm{~g}
\end{aligned}
$$

Volume of cubic (primitive) unit cell $\quad=(\text { length of unit cell })^{3} \quad \rightarrow$ get the length from reference

